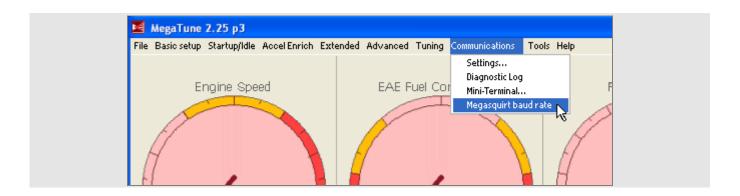
AIM Infotech

Megasquirt MS1 ECU

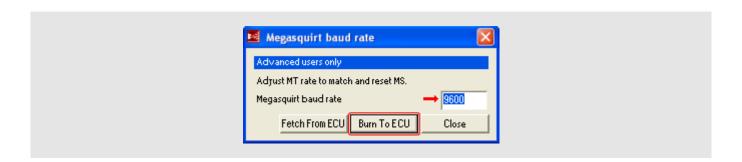
Release 1.04

1

Supported models


This document explains how to connect AiM devices to the Engine Control Unit (ECU) datastream. Supported models are:

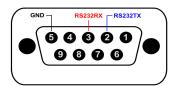
MS1


2

Software configuration

Megasquirt MS1 ECU comes with MegaTune software CD. After software installation, please run it and perform an ECU setting via software following this path: "Communication -> Megasquirt Baud Rate" as shown here below.

"Megasquirt baud rate" panel appears: set "baud rate -> 9600" and press "Burn to ECU" as shown here below.



3

Wiring connection

Megasquirt MS1 features a serial communication protocol on the DB9 front female connector. Here below DB9 female connector pinout – front view –and connection table are shown.

DB9 Connector pin	Pin function	AiM cable label
2	RS232RX	RS232TX/ECU RS232RX
3	RS232TX	RS232RX/ECU RS232TX
5	GND	GND

Please note:

AiM wiring harnesses supplied after September 2018 have the following labels:

ECU RS232TX (white) to be connected to ECU TX pin

ECU RS232RX (blue) to be connected to **ECU RX** pin (if indicated in the connection table above)

AiM wiring harnesses supplied before September 2018 have the following labels:

RS232RX (white) to be connected to ECU TX pin

RS232TX (blue) to be connected to **ECU RX** pin (if indicated in the connection table above)

Race Studio configuration

Before connecting AiM devices to the ECU, set all functions using AiM software Race Studio. The parameters to set in the device configuration are:

• ECU manufacturer: Megasquirt

ECU Model: MS1

5

"Megasquirt – MS1" protocol

Channels received by AiM devices configured with "Megasquirt – MS1" are:

CHANNEL NAME	FUNCTION
MS1_RPM	RPM
MS1_SQUIRT	Control channel
MS1_ENGINE	Control channel
MS1_BARO_ADC	Barometric analogue digital converter
MS1_MAP_ADC	Manifold air pressure
MS1_MAT	Manifold air temperature
MS1_ECT	Engine coolant temperature
MS1_TPS	Throttle position sensor
MS1_BATT_VOLT	Battery voltage
MS1_EGO_VOLT	Exhaust gas oxygen voltage
MS1_EGO_CORR1	Exhaust gas oxygen correction 1
MS1_AIR_CORR	Air correction
MS1_WARMUP_ENR	Warm up enrichment
MS1_PULSEWIDTH1	Pulse width modulation 1
MS1_ACC_ENRICH	Acceleration enrichment
MS1_BARO_CORR	Barometric correction
MS1_GAMMA_ENRICH	Total gamma enrichment
MS1_CURR_VE1	Current Volumetric Efficiency 1
MS1_PULSEWIDTH2	Pulse width modulation 2
MS1_CURR_VE2	Current Volumetric Efficiency 2
MS1_IDLE_DC	Idle Duty Cycle
MS1_ADVANCE	Advance
MS1_AFR_TARGET	Air fuel ratio
MS1_FUEL_PRESS	Fuel pressure
MS1_EGT	Exhaust gas temperature

InfoTech

MS1_IAT_CLT_ANG Intake air temperature sensor

MS1_KNOCK Knock angle sensor

MS1_EGO_CORR2 Exhausted gas oxygen second O2 sensor

MS1_PORT_A Port A

MS1_PORT_B Port B

MS1_PORT_C Port C

MS1_PORT_D Port D

MS1_ECU_STACK CPU Stack

MS1_TPS_LAST Throttle position sensor Last

MS1_BCDC Boost control duty cycle